Parametric item banks
Parametric IRT models
High-level item banks
The high-level item banks provide shortcuts for common IRT parameterisations.
FittedItemBanks.ItemBank2PL
— MethodConvenience function to construct an item bank of the standard 2-parameter logistic single-dimensional IRT model.
FittedItemBanks.ItemBank3PL
— MethodConvenience function to construct an item bank of the standard 3-parameter logistic single-dimensional IRT model.
FittedItemBanks.ItemBank4PL
— MethodConvenience function to construct an item bank of the standard 4-parameter logistic single-dimensional IRT model.
FittedItemBanks.ItemBankMirt2PL
— MethodConvenience function to construct an item bank of the standard 2-parameter logistic MIRT model.
FittedItemBanks.ItemBankMirt3PL
— MethodConvenience function to construct an item bank of the standard 3-parameter logistic MIRT model.
FittedItemBanks.ItemBankMirt4PL
— MethodConvenience function to construct an item bank of the standard 4-parameter logistic MIRT model.
Composable item banks
The composable item banks allow flexible specification of item banks by combining different blocks to build a variety of model parameterisations.
FittedItemBanks.SlopeInterceptTransferItemBank
— Typestruct SlopeInterceptTransferItemBank <: AbstractItemBank
SlopeInterceptTransferItemBank(distribution, difficulties, discriminations) -> SlopeInterceptTransferItemBank
DomainType(::SlopeInterceptTransferItemBank) = OneDimContinuousDomain()
ResponseType(::SlopeInterceptTransferItemBank) = BooleanResponse()
This item bank corresponds the slope-intercept form of teh 2 parameter, single dimensional IRT model.
FittedItemBanks.TransferItemBank
— Typestruct TransferItemBank <: AbstractItemBank
TransferItemBank(distribution, difficulties, discriminations) -> TransferItemBank
DomainType(::TransferItemBank) = OneDimContinuousDomain()
ResponseType(::TransferItemBank) = BooleanResponse()
This item bank corresponds to a 2 parameter, single dimensional IRT model.
FittedItemBanks.CdfMirtItemBank
— Typestruct CdfMirtItemBank <: AbstractItemBank
CdfMirtItemBank(distribution, difficulties, discriminations) -> CdfMirtItemBank
DomainType(::CdfMirtItemBank) = VectorContinuousDomain()
ResponseType(::CdfMirtItemBank) = BooleanResponse()
This item bank corresponds to the most commonly found version of MIRT in the literature. Its items feature multidimensional discriminations and its learners multidimensional abilities, but item difficulties are single-dimensional.
FittedItemBanks.SlopeInterceptMirtItemBank
— Typestruct SlopeInterceptMirtItemBank <: AbstractItemBank
SlopeInterceptMirtItemBank(distribution, difficulties, discriminations) -> SlopeInterceptMirtItemBank
DomainType(::SlopeInterceptMirtItemBank) = VectorContinuousDomain()
ResponseType(::SlopeInterceptMirtItemBank) = BooleanResponse()
This item bank corresponds to the slope-intercept version of MIRT in the literature. Its items feature multidimensional discriminations and its learners multidimensional abilities, but item difficulties are single-dimensional.
FittedItemBanks.NominalItemBank
— Typestruct NominalItemBank <: AbstractItemBank
NominalItemBank(ranks, discriminations, cut_points) -> NominalItemBank
DomainType(::NominalItemBank) = VectorContinuousDomain()
ResponseType(::NominalItemBank) = MultinomialResponse()
This item bank implements the nominal model. The Graded Partial Credit Model (GPCM) is implemented in terms of this.
Currently, this item bank only supports the normal scaled logistic as the characteristic/transfer function.
See also: GPCMItemBank (psuedo-constructor)
References:
FittedItemBanks.GPCMItemBank
— MethodGPCMItemBank(discriminations, cut_points) -> NominalItemBank
This psuedo-constructor creates a NominalItemBank implementing the Graded Partial Credit Model (GPCM).
References:
FittedItemBanks.MonopolyItemBank
— Typestruct MonopolyItemBank <: AbstractItemBank
DomainType(::MonopolyItemBank) = OneDimContinuousDomain()
ResponseType(::MonopolyItemBank) = BooleanResponse()
This item bank implements the monotonic polynomial model with dichotomous responses.
\[\mathrm{irf}(\theta|\xi,{\bf b})=\xi+b_{1}\theta+b_{2}\theta^{2}+\dots+b_{2k+1}\theta^{2k+1}\]
\[\mathrm{irf}^{\prime}(\theta|\mathbf{a})=a_{0}+a_{1}\theta+a_{2}\theta^{2}+\cdot\cdot\cdot+a_{2k}\theta^{2k}\]
References:
FittedItemBanks.BSplineItemBank
— Typestruct BSplineItemBank <: AbstractItemBank
DomainType(::BSplineItemBank) = OneDimContinuousDomain()
ResponseType(::BSplineItemBank) = BooleanResponse()
This item bank implements the a bank with B-spline based item-responses with dichotomous responses.
References: