API reference
ComputerAdaptiveTesting.AggregatorsComputerAdaptiveTesting.NextItemRulesComputerAdaptiveTesting.StatefulComputerAdaptiveTesting.Aggregators.RiemannEnumerationIntegratorComputerAdaptiveTesting.NextItemRules.AbilityVarianceComputerAdaptiveTesting.NextItemRules.CriterionBaseComputerAdaptiveTesting.NextItemRules.EmpiricalInformationPointwiseItemCategoryCriterionComputerAdaptiveTesting.NextItemRules.ExhaustiveSearchComputerAdaptiveTesting.NextItemRules.ExpectationBasedItemCriterionComputerAdaptiveTesting.NextItemRules.FixedRuleSequencerComputerAdaptiveTesting.NextItemRules.GreedyForcedContentBalancerComputerAdaptiveTesting.NextItemRules.ItemCategoryCriterionComputerAdaptiveTesting.NextItemRules.ItemCriterionComputerAdaptiveTesting.NextItemRules.ItemCriterionRuleComputerAdaptiveTesting.NextItemRules.MemoryNextItemRuleComputerAdaptiveTesting.NextItemRules.NextItemRuleComputerAdaptiveTesting.NextItemRules.NextItemStrategyComputerAdaptiveTesting.NextItemRules.ObservedInformationPointwiseItemCategoryCriterionComputerAdaptiveTesting.NextItemRules.PointResponseExpectationComputerAdaptiveTesting.NextItemRules.PointwiseItemCategoryCriterionComputerAdaptiveTesting.NextItemRules.PointwiseItemCriterionComputerAdaptiveTesting.NextItemRules.RandomNextItemRuleComputerAdaptiveTesting.NextItemRules.RandomesqueStrategyComputerAdaptiveTesting.NextItemRules.RawEmpiricalInformationPointwiseItemCategoryCriterionComputerAdaptiveTesting.NextItemRules.StateCriterionComputerAdaptiveTesting.NextItemRules.UrryItemCriterionComputerAdaptiveTesting.Rules.CatRulesComputerAdaptiveTesting.Sim.CatLoopComputerAdaptiveTesting.Stateful.StatefulCatComputerAdaptiveTesting.Stateful.StatefulCatRulesComputerAdaptiveTesting.TerminationConditions.FixedLengthComputerAdaptiveTesting.TerminationConditions.TerminationConditionComputerAdaptiveTesting.Aggregators.maybe_tracked_ability_estimateComputerAdaptiveTesting.Sim.auto_responderComputerAdaptiveTesting.Sim.prompt_responseComputerAdaptiveTesting.Sim.record!ComputerAdaptiveTesting.Sim.run_catComputerAdaptiveTesting.Stateful.add_response!ComputerAdaptiveTesting.Stateful.get_abilityComputerAdaptiveTesting.Stateful.get_responsesComputerAdaptiveTesting.Stateful.item_criteriaComputerAdaptiveTesting.Stateful.next_itemComputerAdaptiveTesting.Stateful.ranked_itemsComputerAdaptiveTesting.Stateful.reset!ComputerAdaptiveTesting.Stateful.rollback!ComputerAdaptiveTesting.Stateful.set_item_bank!
ComputerAdaptiveTesting.Aggregators — ModuleThis module takes care of integrating and optimizing over the ability/difficulty space. It includes TrackedResponses, which can store cumulative results during a test.
ComputerAdaptiveTesting.Aggregators.RiemannEnumerationIntegrator — TypeIn case an item bank is enumerable (e.g. GriddedItemBank), then this method integrates over the ability likihood given a set of responses with a given coefficient function using a Riemann sum (aka the rectangle rule).
ComputerAdaptiveTesting.Aggregators.maybe_tracked_ability_estimate — MethodThis method returns a tracked point estimate if it is has the given ability estimator, otherwise it computes it using the given ability estimator.
ComputerAdaptiveTesting.Sim.CatLoop — Typestruct CatLoop
CatLoop(; rules=..., get_response=..., new_response_callback=...)rules::Any: An object which implements the CAT engine. Implementations exist for:
get_response::Any: The function(index, label) -> Int8` which obtains the testee's response for a given question, e.g. by prompting or simulation from data.
new_response_callback::Any: A callback called each time there is a new responses. If provided, it is passed(responses::TrackedResponses, terminating).
Configuration for a simulatable CAT.
ComputerAdaptiveTesting.Sim.auto_responder — Methodauto_responder(
responses
) -> ComputerAdaptiveTesting.Sim.var"#11#12"
This function constructs a next item function which automatically responds according to responses.
ComputerAdaptiveTesting.Sim.prompt_response — Methodprompt_response(index_, label) -> Int8
This response callback simply prompts the user for the response using the console
ComputerAdaptiveTesting.Sim.record! — Methodrecord!(
recorder::CatRecorder,
tracked_responses
) -> Vector{Bool}
ComputerAdaptiveTesting.Sim.run_cat — Methodrun_cat(cat_config::CatLoop, item_bank::AbstractItemBank; ib_labels=nothing)Run a given CatLoop cat_config on the given item_bank. If ib_labels is not given, default labels of the form <<item #$index>> are passed to the callback.
ComputerAdaptiveTesting.TerminationConditions.FixedLength — Typestruct FixedLength <: ComputerAdaptiveTesting.TerminationConditions.TerminationConditionnum_items::Int64
ComputerAdaptiveTesting.TerminationConditions.TerminationCondition — Typeabstract type TerminationCondition <: ComputerAdaptiveTesting.ConfigBase.CatConfigBaseComputerAdaptiveTesting.NextItemRules — ModuleThis module implements the next item selection rules, which form the main part of CAT.
Bibliography
[1] Linden, W. J., & Pashley, P. J. (2009). Item selection and ability estimation in adaptive testing. In Elements of adaptive testing (pp. 3-30). Springer, New York, NY.
ComputerAdaptiveTesting.NextItemRules.AbilityVariance — Typestruct AbilityVariance{DistEst<:ComputerAdaptiveTesting.Aggregators.DistributionAbilityEstimator, IntegratorT<:ComputerAdaptiveTesting.Aggregators.AbilityIntegrator} <: ComputerAdaptiveTesting.NextItemRules.StateCriteriondist_est::ComputerAdaptiveTesting.Aggregators.DistributionAbilityEstimatorintegrator::ComputerAdaptiveTesting.Aggregators.AbilityIntegratorskip_zero::Bool
This StateCriterion returns the variance of the ability estimate given a set of responses.
ComputerAdaptiveTesting.NextItemRules.CriterionBase — Typeabstract type CriterionBase <: ComputerAdaptiveTesting.ConfigBase.CatConfigBaseAbstract base type all criteria should inherit from
ComputerAdaptiveTesting.NextItemRules.EmpiricalInformationPointwiseItemCategoryCriterion — TypeIn equation 10 of [1] we see that we can compute information using 2nd derivatives of log likelihood or 1st derivative squared. For single categories, we need to an extra term which disappears when we calculate the total see [2]. For this reason RawEmpiricalInformationPointwiseItemCategoryCriterion computes without this factor, while EmpiricalInformationPointwiseItemCategoryCriterion computes with it.
So in general, only use the former with TotalItemInformation
[1] ``Information Functions of the Generalized Partial Credit Model'' Eiji Muraki https://doi.org/10.1177/014662169301700403
[2] https://mark.reid.name/blog/fisher-information-and-log-likelihood.html
ComputerAdaptiveTesting.NextItemRules.ExhaustiveSearch — Typestruct ExhaustiveSearch <: ComputerAdaptiveTesting.NextItemRules.NextItemStrategyComputerAdaptiveTesting.NextItemRules.ExpectationBasedItemCriterion — Typestruct ExpectationBasedItemCriterion{ResponseExpectationT<:ComputerAdaptiveTesting.NextItemRules.ResponseExpectation, CriterionT<:Union{ComputerAdaptiveTesting.NextItemRules.ItemCategoryCriterion, ComputerAdaptiveTesting.NextItemRules.ItemCriterion, ComputerAdaptiveTesting.NextItemRules.StateCriterion}} <: ComputerAdaptiveTesting.NextItemRules.ItemCriterionresponse_expectation::ComputerAdaptiveTesting.NextItemRules.ResponseExpectationcriterion::Union{ComputerAdaptiveTesting.NextItemRules.ItemCategoryCriterion, ComputerAdaptiveTesting.NextItemRules.ItemCriterion, ComputerAdaptiveTesting.NextItemRules.StateCriterion}
This ItemCriterion wraps a a ResponseExpectation and a StateCriterion or ItemCriterion to look at the criterion's expected value for a particular item 1-ply ahead.
ComputerAdaptiveTesting.NextItemRules.FixedRuleSequencer — Typestruct FixedRuleSequencer{RulesT} <: ComputerAdaptiveTesting.NextItemRules.NextItemRulebreaks::Tuple{Int64}rules::Any
ComputerAdaptiveTesting.NextItemRules.GreedyForcedContentBalancer — Typestruct GreedyForcedContentBalancer{InnerRuleT<:ComputerAdaptiveTesting.NextItemRules.NextItemRule} <: ComputerAdaptiveTesting.NextItemRules.NextItemRuletargets::Vector{Float64}groups::Vector{Int64}inner_rule::ComputerAdaptiveTesting.NextItemRules.NextItemRule
This content balancing procedure takes target proportions for each group of items. At each step the group with the lowest ratio of seen items to target is selected.
http://dx.doi.org/10.1207/s15324818ame0403_4
ComputerAdaptiveTesting.NextItemRules.ItemCategoryCriterion — Typeabstract type ItemCategoryCriterion <: ComputerAdaptiveTesting.NextItemRules.SubItemCriterionBaseComputerAdaptiveTesting.NextItemRules.ItemCriterion — Typeabstract type ItemCriterion <: ComputerAdaptiveTesting.ConfigBase.CatConfigBaseComputerAdaptiveTesting.NextItemRules.ItemCriterionRule — Typestruct ItemCriterionRule{NextItemStrategyT<:ComputerAdaptiveTesting.NextItemRules.NextItemStrategy, ItemCriterionT<:ComputerAdaptiveTesting.NextItemRules.ItemCriterion} <: ComputerAdaptiveTesting.NextItemRules.NextItemRulestrategy::ComputerAdaptiveTesting.NextItemRules.NextItemStrategycriterion::ComputerAdaptiveTesting.NextItemRules.ItemCriterion
ItemCriterionRule which together with a NextItemStrategy acts as an adapter by which an ItemCriterion can serve as a NextItemRule.
ItemCriterionRule(bits...; ability_estimator=nothingImplicit constructor for ItemCriterionRule. Will default to ExhaustiveSearch when no NextItemStrategy is given.
ComputerAdaptiveTesting.NextItemRules.MemoryNextItemRule — Typestruct MemoryNextItemRule{MemoryT} <: ComputerAdaptiveTesting.NextItemRules.NextItemRuleitem_idxs::Any
ComputerAdaptiveTesting.NextItemRules.NextItemRule — Typeabstract type NextItemRule <: ComputerAdaptiveTesting.ConfigBase.CatConfigBaseAbstract base type for all item selection rules. All descendants of this type are expected to implement the interface (::NextItemRule)(responses::TrackedResponses, items::AbstractItemBank)::Int.
In practice, all adaptive rules in this package use ItemCriterionRule.
NextItemRule(bits...; ability_estimator=nothing, parallel=true)Implicit constructor for NextItemRule. Uses any given NextItemRule or delegates to ItemCriterionRule the default instance.
ComputerAdaptiveTesting.NextItemRules.NextItemStrategy — Typeabstract type NextItemStrategy <: ComputerAdaptiveTesting.ConfigBase.CatConfigBaseAbstract type for next item strategies, tightly coupled with ItemCriterionRule. All descendants of this type are expected to implement the interface (rule::ItemCriterionRule{::NextItemStrategy, ::ItemCriterion})(responses::TrackedResponses, items) where {ItemCriterionT <: }(strategy::NextItemStrategy)(; parallel=true)::NextItemStrategy`
ComputerAdaptiveTesting.NextItemRules.ObservedInformationPointwiseItemCategoryCriterion — TypeThis calculates the pointwise information criterion for an item response model.
ComputerAdaptiveTesting.NextItemRules.PointResponseExpectation — Typestruct PointResponseExpectation{PointAbilityEstimatorT<:ComputerAdaptiveTesting.Aggregators.PointAbilityEstimator} <: ComputerAdaptiveTesting.NextItemRules.ResponseExpectationability_estimator::ComputerAdaptiveTesting.Aggregators.PointAbilityEstimator
This ResponseExpectation gets expected outcomes based on a point ability estimates.
ComputerAdaptiveTesting.NextItemRules.PointwiseItemCategoryCriterion — Typeabstract type PointwiseItemCategoryCriterion <: ComputerAdaptiveTesting.NextItemRules.SubItemCriterionBaseComputerAdaptiveTesting.NextItemRules.PointwiseItemCriterion — Typeabstract type PointwiseItemCriterion <: ComputerAdaptiveTesting.NextItemRules.SubItemCriterionBaseComputerAdaptiveTesting.NextItemRules.RandomNextItemRule — Typestruct RandomNextItemRule{RandomT<:Random.AbstractRNG} <: ComputerAdaptiveTesting.NextItemRules.NextItemRulerng::Random.AbstractRNG: Default: Xoshiro()
This is the most basic rule for choosing the next item in a CAT. It simply picks a random item from the set of items that have not yet been administered.
ComputerAdaptiveTesting.NextItemRules.RandomesqueStrategy — Typestruct RandomesqueStrategy <: ComputerAdaptiveTesting.NextItemRules.NextItemStrategyrng::Random.AbstractRNGk::Int64
http://dx.doi.org/10.1207/s15324818ame0204_6
ComputerAdaptiveTesting.NextItemRules.RawEmpiricalInformationPointwiseItemCategoryCriterion — TypeSee EmpiricalInformationPointwiseItemCategoryCriterion for more details.
ComputerAdaptiveTesting.NextItemRules.StateCriterion — Typeabstract type StateCriterion <: ComputerAdaptiveTesting.NextItemRules.CriterionBaseComputerAdaptiveTesting.NextItemRules.UrryItemCriterion — Typestruct UrryItemCriterion{AbilityEstimatorT<:ComputerAdaptiveTesting.Aggregators.PointAbilityEstimator} <: ComputerAdaptiveTesting.NextItemRules.ItemCriterionability_estimator::ComputerAdaptiveTesting.Aggregators.PointAbilityEstimator
This item criterion just picks the item with the raw difficulty closest to the current ability estimate.
ComputerAdaptiveTesting.Rules.CatRules — Typestruct CatRules{NextItemRuleT<:ComputerAdaptiveTesting.NextItemRules.NextItemRule, TerminationConditionT<:ComputerAdaptiveTesting.TerminationConditions.TerminationCondition, AbilityEstimatorT<:ComputerAdaptiveTesting.Aggregators.AbilityEstimator, AbilityTrackerT<:ComputerAdaptiveTesting.Aggregators.AbilityTracker} <: ComputerAdaptiveTesting.ConfigBase.CatConfigBasenext_item::ComputerAdaptiveTesting.NextItemRules.NextItemRule: The rule to choose the next item in the CAT given the current state.
termination_condition::ComputerAdaptiveTesting.TerminationConditions.TerminationCondition: The rule to choose when to terminate the CAT.
ability_estimator::ComputerAdaptiveTesting.Aggregators.AbilityEstimator: The ability estimator, which estimates the testee's current ability.
ability_tracker::ComputerAdaptiveTesting.Aggregators.AbilityTracker: The ability tracker, which tracks the testee's current ability level. Default: NullAbilityTracker()
Configuration of the rules for a CAT. This all includes all the basic rules for the CAT's operation, but not the item bank, nor any of the interactivity hooks needed to actually run the CAT.
This may be more a more convenient layer to integrate than CatLoop if you want to write your own CAT loop rather than using hooks.
CatRules(; next_item=..., termination_condition=..., ability_estimator=..., ability_tracker=...)Explicit constructor for CatRules.
CatRules(bits...)Implicit constructor for CatRules.